
Single Output with Multi-Class Classification 

The convolutional neural network will learn using supervised training in Keras. The 

training and validation datasets will have a supervised output of a single label for each class in a 

300 by 300 image. The dataset consisting of circles, triangles, squares and rectangles is created 

by the program draw.py. It uses multiprocessing of independent pool workers to draw these 

shapes and saving these shapes in ".png" format. Draw.py uses the cairo library for drawing the 

shapes and the random library to randomize the location and size of these shapes. Each 300 by 

300 image will have two variations, which are the linear contours and the fill of the shape 

pertaining to the same class. To execute the file, simply run python draw.py --draw-func 

draw_circle --num-images 2000 --file-dir training_set/circle/circle_, where draw-func represents 

the drawing function that draws either circle, triangle, square or rectangle or a combination of 

these shapes if needed. There are 2,000 images per data shape with a total of 8,000 images for 

the training dataset. The validation dataset consists of 400 images per data shape with a total of 

1,600 images, which is 20% of the training dataset. 

A single PNG image file has a better pixel precision, but it comes at a cost of having 

twice or even three times as much data storage as a JPEG file. Since the training data tend to 

increase when the architecture of the convolutional neural network has more layers, it is efficient 



to reduce the size of the images by converting from PNG to JPEG. The program 

reduce_images_pickle.py reduces image sizes by adjusting a ratio of height and base decrease. It 

then saves the images in pickle file, where the same pickle file is opened to save the newly 

reduced size images into a folder.  



 

After each image file size is reduced, pickletestcats.py is the main file that will process 

the reduced sized images. It is a multiprocessing program of independent pool workers, which 

uses the Pillow 3 module to open JPEG image files. The pool workers individually convert the 

JPEG image file into a numpy array of shape (300, 300, 3), where 300 represents the width and 

the height of the image and 3 represents the color format. The image's corresponding output label 

(y_label) is generated by using the Keras library of to_categorical encoding. The encoding 

transforms integers into different binary 1 and 0 encodings of output classes. These classes are 

circle, rectangle, triangle, and square. The numpy array's total size of 2000 images per shape is 

reduced by a half if the numpy data structure is a float-16 instead of float-32. After the execution 

of the program for each shape in the training and validation data, there will be eight pickle files 

called “circle.pkl”, “triangle.pkl”, “square.pkl”, “rectangle.pkl”, “valid_circle.pkl”, 

“valid_triangle.pkl”, “valid_square.pkl” and “valid_rectangle.pkl”. A tuple of (image data, 

output y label) is returned by the pool workers. 



 

The combined pickled data of all the shapes represent the training dataset and the 

validation dataset, which is needed for the convolutional neural network to learn. The file 

merge_files_revised.py merges the shapes by using the Loader class, which is a multiprocessing 

module, to load the images and store them in a very large list. All the pool workers execute the 

loading of the images and the appending of the tuple (image data, output y label) independently. 

Therefore, a global storage of each large dataset list per shape is needed because each pool 

worker needs access to the it. I tried allocating the list using “None” times number of images. 

The numpy array is organized in a tuple, so the list allocation doesn't work in numpy arrays or in 

tuples. Memmap would not work either because the merged dataset contains a tuple, not a single 

memory array. After the loaded data is stored in the large lists, the program uses list 

concatenation to merge all the shapes together, forming the training and validation dataset.  

Since the dataset is a very large list, joblib does a successful job dumping and 

compressing into a file, which will be loaded from load_merge_files.py. The reason for having 

one file for merging the dataset and another file for loading the merged dataset is that it is better 

to shuffle the dataset before loading into the convolutional neural network. Although the Keras' 

generator automatically shuffles with each run of an epoch, it is a good practice to shuffle the 

training dataset to allow for randomization of images. The program shuffles the dataset and loads 

the previously merged files by organizing the tuple into two different lists. The first one contains 

the numpy pixel data and the second list contains its corresponding y label output, which is 

needed for a supervised training of the neural network. The large list is being stored using the 

numpy array's memory mapping because each shape of the data pixel array is (300, 300, 3) and 

its corresponding y output label is (4, ) where 4 represents the number of classes to be learned by 

the convolutional neural network.  



    

 

 

Background data without the Shape Contours 

It is redundant for the convolutional neural network in cnn_copy_sobel_test.py to obtain 

pixelized convolutions from background pixels that do not have object contours. An image 

preprocessing function is needed before the image data are inputted into the first two-

dimensional convolution of the network. This function get_edges is responsible for cropping the 

image and reducing the background space. The input image needs to be converted into grayscale 

for the Sobel algorithm to process. Since findContours of the opencv2 module alters the original 

image, a copy of the input image is needed. After finding the contours in both the x and y 

directions of the Sobel algorithm, the gradients in both directions clarify the contour boundaries 

of the image. The combined gradient adds the weights in gradients from x and y derivatives, 

which finalizes the pixels for the image contours.  

When the coordinates of the contours are detected, the rectangular boundaries are drawn 

around it by using opencv2’s rectangle method. A list for x coordinates and another list for y 

coordinates stores all the x and y coordinates returned by findContours. The minimum and 

maximum values of the x and y lists will determine the area of the cropping region. The locations 

of the rectangles are in (x,y) coordinates where the cropped version will be from the top left 

corner (smallest_x, smallest_y) and the bottom right opposite corner (largest_x, largest y). The 

original input image will be cropped by slicing the coordinates of the original array.  

The layers of the convolutional neural network will gather pixels from images that are 

cropped and will not see the original image. To maintain the scale consistency of the size of the 

input image at 300 pixels by 300 pixels in RGB format, the cropped image needs to be resized in 

aspect ratio with a fixed width of 300 pixels. The flatten() layer of the convolutional neural 



network requires the input images to have the same numpy shape array; get_edges must return 

the same shape of (300, 300, 3). A white background of 300 pixels by 300 pixels is created and 

converted into an 8-bit unsigned integer numpy array. By using the paste function from the 

Pillow library, the resized cropped image is pasted onto the white background. The pasted, 

cropped image is converted back into a 32-bit numpy float value because Keras processes numpy 

arrays in 32-bit float values.     

 

Convolutional Neural Network Architecture  

This convolutional neural network architecture uses the Keras Sequential model that acts 

as instances being layered on top of each other. The convolutional layers in the beginning of the 

neural network gather pixels of each input data. Depending on the quality and quantity of the 

image data, the number of output filters will vary. The output filters are the third dimensionality 

of the convolutional neural layer at the z axis where a rise in output filters and convolutional 

layers increases the parameter of the network. Increasing the number of filters is necessary as the 

training data increases, so 128 filters for the first layer of the second convolutional neural 

network is sufficient for 8,000 JPEG images. The convolutional layer will operate for each 6 

pixels by 6 pixels square area in a single 300 pixels by 300 pixels image with a stride of (1,1) 

overlap. Padding might be needed since 600 doesn't divide evenly by 36. “Valid” padding means 

that there won’t be additional padding around the borders of the input image whereas "same" 

padding means padding around the input to create the same dimensions as the output filters. 

“Same” padding drastically increases the parameters of the network. For instance, a “valid” 

padding with two convolutional layers and a 3-layer perceptron has 5,063,428 parameters while 

the “same” padding of the equivalent architecture results in 9,623,422 parameters. The rectifier 

activation function outputs from the first layer of the convolutional neural network. It is an easier 

option than the sigmoid activation function because the rectifier activation function max(0, x) 

creates nonlinearity with the summation of weights without as much computation as the sigmoid 

activation function. 

After the 6 pixels by 6 pixels convolutions are individually formed and activated with the 

rectifier, the 6 pixels by 6 pixels pool size will down-sample the number of pixels per output 

filter for the first convolutional layer. Then, a second two-dimensional convolutional neural layer 

is added to the Sequential model. To enable a growth of learning, the number of output filters is 



increased twice as much from 128 in the first layer to 256 in the second convolutional layer. The 

stride is still (1,1) by default in Keras with a convolution size of (6,6) with no padding. The relu 

activation is also the summation output from the second convolutional layer. After the 

convolutional filters are created in the second layer, the pixels will be downsampled through 

maxpool. Maxpooling determines whether each pixel is similar or belong to the surrounding 

pixels. If it is, the pixel will be visible in the down-sampled layer whereas the pixel removed in 

the maxpool layer if not.  

After the formation of two convolutional layers with maxpool in between, the flattening 

of these layers allows the convolutional network to be fed into a traditional fully connected 

neural network. Keras requires that the flattening of the pixelized data input to have a defined 

shape in the format (width, height, color). The drawback of using convolutional layers is that the 

images must be the same size. However, convolutional layers are capable of extracting pixels 

and characteristics from the image data and processes them in layered filters. The basic multi-

layer perceptron is not capable of directly extracting features from pixels. In the fully connected 

layer of the network, a Dense layer is added onto the Sequential model. A Dense layer represents 

a basic perceptron where 512 neurons are fully connected from the flattening layer to the output 

of the first Dense layer. The output again will be summed and calculated by the rectifier 

function. The dropout at the rate of 0.35 is added for the neural network to prevent overfitting. 

The neurons will be dropped out from the network, removing their connective weight 

functionality from the next Dense layer of the network.  

The final layer will have four units because the number of output classes is four. The 

activation function for the last layer will be softmax, which squashes the probabilities of the 

output classes from zero to one. After the architecture of the neural network is defined as a 

Sequential model, the convolutional and dense layers for the single-label output with multi-class 

classification will be compiled. The optimizer for compiling the convolutional neural network is 

one of the most crucial parameters of the learning process. This is because the optimizer 

determines the learning rate, decay and momentum of the network for correct weight updates 

during the forward-pass and backpropogation.  

 

 

 



Data input into the convolutional neural network architecture 

After the architecture of the network, the optimizer and the loss functions are defined, the 

convolutional neural network will be feed the input images. Keras image generator uses data 

augmentation to create variations of the image data ranging from scaling, rotating to flipping in a 

default batch size of 32 per data input. The training data generator consists of rescaling at 1./255, 

shearing at 0.2, zooming at 0.2, horizontal flip and preprocessing function get_edges.  

Training and validation data generators will fit the Sequential model on batches of 32 

with real-time data augmentation (Keras.io). The validate data generator will be rescaled at 

1./255 and will also be preprocessed with the function get_edges. Fitting the validation and 

training data generator will “compute quantities required for feature-wise normalization such as 

standard deviation, mean, and principal components if ZCA whitening is applied,” (Keras.io). 

Data augmentation will prevent overfitting if the augmented data has informative pixels. The 

early stopping of the convolutional neural network is applied to also prevent overfitting. The 

network will stop training after three epochs of nondecreasing improvement in the loss values. 

Finally, after the convolutional neural network is learning through adjusting weight parameters 

through supervised training with categorical cross entropy loss, the Sequential model is 

evaluated on a validation set in terms of the validation loss and the validation accuracy. The 

layers of the model and their corresponding output shapes are printed via the summary() method. 

The Sequential model is saved as a hierarchical data format (HDF5) file and will be loaded in 

another file for the testing set, which will predict and evaluate the output classes of the input 

image data. The testing set file makes predictions based from the trained model that has the 

network architecture, weight and loss values and optimizer. 

 

Cropped Shapes with Different Dimensions Using Spatial Pyramid Pooling 

 The spatial pyramid pooling functions as a layer in between the convolutional layers. It 

will be used to see if the loss of the convolutional neural network can be reduced. The program 

cnn_sobel_main.py saves the cropped images of different dimensions, 300 pixels by 300 pixels 

and 300 pixels by 150 pixels in their respective folders. The images are pickled into a tuple of 

image data array and output labels, merged and split into two separate lists of image data and 

categorical label encodings for training and validation sets. The cnn_sobel_spp.py file does not 

use the preprocessing function get_edges because the processed images are already cropped, 



scaled and saved accordingly in cnn_sobel_main.py. The architecture with spatial pyramid 

pooling will use Keras Sequential layered model. Spatial pyramid pooling allows different image 

sizes to be incorporated into the convolutional neural network by replacing the flatten layer with 

the spatial pyramid pooling([1, 2, 4]) layer. The max-pool layer is also not needed into between 

the two-dimensional convolutional layer. The parameter [1, 2, 4] list array represents 3 regions 

with 1, 2x2 and 4x4 max pools, which creates 21 outputs per feature map, (yhenon/keras-spp). 

The architecture of the network is as follows: convolutional two-dimensional layer, max-pool 

layer, dropout layer, spatial pyramid pooling layer, dense Layer, dropout layer and dense layer 

for output classes. The Sequential model is then fitted for the training dataset with 300 pixels by 

300 pixels and the other training dataset with 300 pixels by 150 pixels. 

 

Inception Model using Keras Functional API 

A smaller version of Google’s Inception model architecture can be created using Keras 

functional API. The Input instance allows a defined image size of the shape (300, 300, 3), where 

Input represents the input data being loaded from the pickle file. The Inception module 

architecture consists of piling two-dimensional convolutions on top of each other; these layers 

are called towers. The first layer of the tower will obtain the vectors of input image matrices 

from Input(). It is followed by the second consecutive layer of the two-dimensional 

convolutional layer, which will obtain the output from the first layer of the tower. The layering 

of these two consecutive convolutional layers can continue to as many towers as needed. The 

layers of the tower are concatenated into a single output and then flattened for the towered layers 

to feed into the fully connected layer. The fully connected layer follows the dense instance where 

the first dense layer gets data from the flattened output. There will be dropout after the first dense 

layer, which gets its input from the first fully connected layer. The functional input into the layer 

modules continues as needed where the final dense layer contains four neurons for soft-max 

activation to a probabilistic output class. An inception model is then created from the functional 

layering by using the model instance where the inputs represent the input data and the outputs 

represent the resulting layer, which is the fully connected layer. The data generator, early 

stopping and the fitting of the inception model remains the same as the previous convolutional 

neural network file.  

 



Multi-output (Y-label) Multi-Class Classification 

The multi-output classification is different from the single-output classification during the 

compilation of the Sequential model as well at the last dense layer. The last dense layer is 

responsible for generating the output classes in supervised training. At the last dense layer, the 

number of neurons, which is the number of classes, remains the same. The sigmoid activation 

function is used instead of soft-max because soft-max makes it more evident for a single output 

classification. Multi-label classification does not have a chance probability of an image 

pertaining to a single class. A multi-label output image contains multiple classes, so the sigmoid 

activation will smooth out multiple probabilities of classes pertaining to the data image. The loss 

function for the Sequential model will be in binary cross-entropy instead of categorical cross-

entropy because the binary cross-entropy represents an array of zero or one label of an input 

image where zero doesn’t belong to the class and one belongs to the class. For instance, the array 

[1 1 1 1] represents that the input image has all the shapes belonging to all the classes.  

The difference between the single-label output with multi-class classification and multi-

label output with multi-class classification is that the multi-label output will learn the intersection 

of different shapes from different classes not just a single class. The training dataset will consist 

of two or more classes on a single image consisting of the labels (circle, triangle, square, 

rectangle), (circle, rectangle), (circle, rectangle, square), (circle, square), (circle, triangle), (circle, 

triangle, rectangle), (circle, triangle, square), (rectangle, square), (triangle, rectangle), (triangle, 

rectangle, square) and (triangle, square) to create a consistent layered effect of the images, the 

same images from the previous training dataset on single-label output is used. For the layering of 

the shapes on top of each other, each pickle file representing a shape is loaded and returned as a 

numpy array. Concatenating the numpy array, rather than as a list in the single-label output, will 

combine the layers of the image data, creating an intersection of different shapes.  

The file merge_pkl_files.py is an option for merge where the intersections of shapes are 

created by draw.py. It does so by returning each pickled shape as a numpy array and merging 

them into layers in the next corresponding file. Since each pickled file from the training dataset 

consists of 2,000 images per shape, the memory mapping of numpy arrays are used for numpy 

array data in the shape (number of shapes, 300, 300, 3) and their categorical encoding in the 

shape (number of shapes, 4). The Loader() class uses multiprocessing of independent pool 

workers to return serialized pickled numpy arrays into function results(), where list arrays are 



stored globally. A pickle file called individual_data_shapes.pkl is created to represent the 

memory mapping of the pixelized data of each shape dataset for training and validation. The 

program load_merge_intersection.py merges all numpy arrays that describes each shape's pixels 

into layers in the next corresponding file. Each numpy array of data pixels represents a layer of 

information rather than as a merged list. So, the training dataset will consist of a combination of 

each shape layer, creating layered intersections of the same shape data of the original dataset. 

This is for the addition of the convolutional neural network where each training data will have 

multiple outputs as a label of shapes instead of a single output. This creates two pickle files by 

running the same program twice with different variables and pickle files called 

intersection_shapes_one.pkl and intersection_shapes_two.pkl. The point of these pickle files is 

for another program, save_pickle_images.py, to save these as images by loading the intersected 

layers of these pickle files. 

 











 

After the images for the multi-label output with multi-class classification are created, the 

images will be organized in a pickle file like the one with the single-label output. The difference 

is in the second data structure, which is y-label, that is part of the (data image, y-label) tuple. 

This y-label will be created by the multi-label binarizer class. It is a numpy array in binary 

representing zero for no class representation and one for class representation. For example, an 

image that consists of all shapes will have the y-label [1 1 1 1]. An image that has a circle, 

triangle and rectangle will have the y_label [1 1 0 1]. The numpy.squeeze function is needed to 

remove the extra shape axis created by multi-label binarizer so that Keras can process the numpy 

list structure correctly.  



 



 

  

After these pickle files are created, the program merge_files.py merges all types of 

intersections into a single large list for training and validation data. It is very similar to the 

merge_files.py for single label output for multi-class classification. The difference is that there 

are a lot more files to load and merge. Since each intersection dataset consists of 2,000 images 

with a total of 22,000 images is a lot of repetitive data, half of each dataset is merged instead of 

the entire set with a total of 11,000 images. The validation data for the intersections consists of 

200 images for each multi-label class, with a total of 2200, which is 20% of the training dataset. 

It dumps all the merged dataset, training dataset and validation dataset into a pickle file called 

data_shapes.pkl in order for load_all_intersections.py to create two large lists of the intersected 

data: the numpy image data list and its corresponding multi-label output. Similar to the single-

label output, the multi-label output for the training dataset and the validation dataset are shuffled 

in order to randomize the data input for the convolutional neural network. 



 

 

Conclusion of the optimal Convolutional Neural Network Architecture 

It is unclear which neural network architecture works better for generalization: 2 Dense 

layers or 3 Dense layers with the final Dense layer representing the output classes of the 

convolutional neural network. I am not sure if the white background from the cropped images 

should pertain to a class. Will that decrease the loss of the neural network? The lowest loss I can 

obtain from training the network is 0.3466. This has the architecture in the chart below: 

adamax = Adamax(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) #prev 0.002 

Number of 

Filters 

64  128   512 512 

 

512 

 

4 

Layer Type CONV_2D  MAX 

POOL 

CONV_2D  MAXPOOL Flatten() Dense() Dense() 

 

Dense() Dense() 

Conv. Size (6,6) (6,6) (6,6) (6,6)  Dropout 

(0.35) 

Dropout 

(0.35) 

Dropout 

(0.35) 

 

Padding  valid  valid       

Activation relu  relu   relu relu relu softmax 

Epoch 30/50 

250/250 [==============================] - 233s - loss: 0.3466 - acc: 0.8096 - val_loss: 0.3560 - val_acc: 0.7869 

Test loss: 4.95138476849 

Test accuracy 0.673125 

Total params: 4,041,156 

Trainable params: 4,041,156 

Layer(type)                  Output Shape               Param #    

conv2d_1(Conv2D)             (None, 295, 295, 64)       6976 



max_pooling2d_1(MaxPooling2D) (None, 49, 49, 64)         0 

conv2d_2(Conv2D)             (None, 44, 44, 128)        295040 

max_pooling2d_2(MaxPooling2D) (None, 7, 7, 128)          0 

flatten_1(Flatten)           (None, 6272)               0 

dense_1(Dense)               (None, 512)                3211776    

dropout_1(Dropout)           (None, 512)                0 

dense_2(Dense)               (None, 512)                262656 

dropout_2(Dropout)           (None, 512)                0 

dense_3(Dense)               (None, 512)                262656     

dropout_3(Dropout)           (None, 512)                0 

dense_4(Dense)           (None, 4)                2052    

 

  


