
Below are important research of neural networks which will be implemented in the code:
Steps to create a neural network:
1. Learn a model that generates sensory data rather than classifying it. Eliminates the need for large amounts of labeled 
data.
2. Learn one layer of representation at a time using restricted boltzmann machines. This decomposes the overall learning 
task into multiple simpler tasks and eliminates the inference problems that arise in generative models.
3. Use a separate fine-tuning stage to improve the generative or discriminative abilities of the composite model.
A combination of these ideas leads to a novel and effective way of learning multiple layers of representation. 
- Geoffrey E. Hinton
Optimization: 
Steps to improve on a neural network from Geoffrey E. Hinton:
Allow higher-level feature detectors to communicate their needs to lower-level ones whilst also being easy to implement 
in layered networks of stochastic binary neurons that have activation states of 1 or 0 turned on with a probability that is a 
smooth non-linear function of the total input they receive.
Without the layer-by-layer learning, fine-tuning alone is hopelessly slow. Instead of fine-tuning the model to be a better at 
generating data, back-propagation can be used to fine-tune it to be better at discrimination. This works well.
To infer a probability distribution over the various possible settings of the hidden variables. 
Gaussian distribution, Restricted Boltzmann Machines.
Learning feature detectors
The optimizer function in Kera’s classifier.compile(optimizer, loss, metrics) is the algorithm you are going to use to find 
the optimal set of weights of the network. The “adam” optimizer using stochastic gradient descent algorithm that’s 
efficient. What about the rmsprop? It computes the single gradient in batches and is slower. A sigmoid loss function is 
similar to logistic regression. After weight updates, the model uses metrics accuracy to improve the model’s performance.

CNN Architecture:
2DConv -> ReLU -> MaxPool -> 2DConv -> ReLU -> MaxPool -> Flatten() -> Fully connected 2-layer neural network 

128 neurons for the first
layer -> ReLU -> 128 
for hidden layer -> 
ReLU -> 3 neurons for 
output layer -> softmax 

Learning/Training
The training process will use the cross-entropy error with activation functions of sigmoid or softmax. The softmax 
produces probability of the output. The starting loss, given at training, need to be consistent with the number of classes in 
the network. The training process will use stochastic gradient where the gradient is computed per input instead of in a 
batch. I will also try rmsprop, which is a batch training. I also forgot to use the prediction function if the output is 0/1 but 
that can be adjusted for a multi-class output. Here’s an example from the “Deep-Learning in Python” on-line lecture that 
uses a simple ANN:
#Part 3: Making predictions and evaluating the model
#Predicting the test results

y_prediction = classifier.predict(x_test_scaled)



y_prediction = (y_prediction > 0.5) 
#neural network's final output will be true if the activation function is greater than 0.5, which means greater than 50% 
chance of leaving the bank
#Predicting a single new observation
new_prediction = classifier.predict(sc.transform(np.array( [[0.0,0,600,1,40,3,60000,2,1,1,50000]] )))
new_prediction = (new_prediction > 0.5)
#Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred) #so far we just split your dataset into a training set and a test set
The variance problem of using validation sets is because validation sets can represent very different accuracy on another 
test, which is very inconsistent. Judging model on just one accuracy and one test set is not super relevant for knowing how
well the model does in terms of loss, accuracy and generalization. The K-Fold Cross Validation will fix this variance 
problem because it splits the training set into 10 folds where k = 10 in 10 different iterations. Nine folds will represent the 
training set and 1 fold is to test the neural network. It is much more relevant because it takes the average. 
First few weeks of September:
Research on Neural Network’s and programming in Python
Paid $100 to go to an in-person group for deep learning, which uses the cloud to train on images of cats and dogs. The 
lecturer told me I should use Tensorflow or one of the popular libraries. Since I’m interested in extracting features of 
shapes for the neural network to learn, he told me that a convolutional network will do the job. This is because a 
convolutional neural network is designed to learn the pixels of images in a three dimensional output space. It does this by 
pooling and flattening the layers of a constant pixel size, or use padding if the size doesn’t fit the dimensions of the image.
Last 3 weeks of September:

I spent this time taking udemy’s online courses in learning the basics of python, first two week’s of Andrew Ng’s 
machine learning course. I have tried training a basic convolutional neural network of cats and dogs using the tutorial 
online but since my laptop doesn’t have a Nvidia GPU I can’t use GPU computation locally. It will take a couple of days 
just to get the output of the convolutional network. 



First 3 weeks of October: 

I decided to use the machine learning library Keras instead because it uses Tensorflow (in python 3) and Theano (in 
python 2) as backend. I spent 3 weeks reading Hagan’s Neural Network Design book (2 weeks), reviewing on linear 
algebra (1 week) and learning and taking notes on multi-variable calculus on Kahn academy (1 week).

Week of October 23: 
The baby AI image dataset is very old and has bugs in it. I wasn’t able to extract the dataset by running their 

python program. So, I spent all this time creating my own dataset and preparing it for loading using pickle’s serialization 
format into Google Cloud’s Machine Learning Engine. I created my own python class called Draw.py, which uses 
multiprocessing of Pool workers in a class to draw images themselves
as well as the intersection of images. Multiprocessing allows me to
make as many images as possible by using parallel computing of 4
cores in a CPU. 



This file reduces the image’s quality to reduce the file size:





Below are more examples of the training dataset in JPEG extension:





I had problems loading the images to a pickle file because I originally stored the images as a dictionary which represents 
in a string format. Numpy wants a float object, so I decided to use Python’s list data structure to store all the numpy 
arrays. 



10.31.17:
The training set consists of a total of 6,200 images. Before being serialized into a pickle file, the training set is 

organized in a tuple structure (numpy array, y_label). The numpy array is the data array processed by the PIL module in 
(300, 300, 3) format. The numpy array represents the matrix in float32 of the image. The y_label represents the target 
values of the shapes, which is the expected output of the convolutional neural network. Keras requires categorical 
crossentropy loss to be computed with categorical encodings. The categorical one hot encoding transfers integers 
(0...number of classes) into binary format. My y_label is a series of categorical hot encodings of 0, 1, 2 in binary format of
three classes (circles, rectangles and squares, triangle). 

I had to change the numpy array data structure from a default float to float32 bit since the loading of the pickle 
files in the default float structure consumes too much memory in megabytes per file. The difference almost reduced the 
entire file size from 3.0 GB (without compression) to 1.7 G.B.  The pickle files are too huge, so I have to reduce the 
quality and size of each image to reduce the pickle files. Pickle loads and image creation of the shapes are created using 
multiprocessing of independent Pool workers. I have been trying to figure out how to create a pickle file, organize numpy 
arrays and store them in a huge list, dump that huge list using joblib. Use memmap to store large numpy arrays because 
it's inefficient for the list to increase in data memory allocation in list comprehension of pickle loading. The file below 
create (numpy arrays, y_label) tuples and stores them in a pickle file.  

The short-term goal is to train the shapes individually first and then figure out how to get the model to generalize 
on the “intersection” of shapes either by using recurrent convolutional neural networks or multi-label output using 
supervised learning. How will the network learn? I need to adjust the architecture of the CNN. The multi-label output is 
simpler and much easier. This requires sigmoid activation and loss = binary_crossentropy at the output layer for multi-
label output to work. 

  
   

    



This file merges all the pickled files that each represents the individual shape data and their y_labels from training, 
validation and testing set.



This file uses memory mapping to store large numpy arrays, and randomize the data arrays. It then stores all the data in a 
compressed pickle file for Google Cloud to load. Google Cloud uses python 2, so the CNN loader file will also use python
2.

 

11.3-11.5.17:
Google cloud works locally but had errors of loading pickle file remotely on google cloud because the Cloud Compute 
Engine doesn't recognize python's file descriptor. I need to use tensorflow's open method, need to set gs:// for every input 
file data for Google Cloud to recognized it. Here are the steps to run the CNN loader file in Google Cloud:



    

11.6.17:
There is an memory error when running on Google Cloud's regular CPU after one set of 10 epochs for the first half of the 
dataset. There is not enough memory allocated and training took 1 hour, which is too slow. I decided to use yaml 
configuration to run on a single NVIDIA K80 GPU processor on Google Cloud Compute Engine.  
11.7.17:
I executed this with no errors in Google Cloud with GPU computing on a validation set 1000 images and training set of 
6000 images with roughly 60 percent accuracy, 3 percent error rate in 3 series of 10 epochs per training set each. The 
learning model is able to be saved. Google Cloud automatically plots the gradient on Tensorboard. The reason the error 
rate is so high and accuracy is low is because there are alot of background samples that the CNN intakes as pool sizes. 
Background colored samples are data that contains no linear information - unimportant numpy array figures. so when the 
network does the maxpool of background samples near the 'important line samples', if the background samples are in 
greater distributation than the amount of important line samples, maxpool will label that area as background sample which
makes the neurons increase the weights for backgrounds instead of the contour images itself.
11.8.17:
I increased the y-label output from 3 classes to 4 classes. Keras does the automatic shuffle at every epoch in fit_generator. 
I changed the architecture of the CNN, add drop out layers that might drop out neurons that have no data of contour 
characteristics being drawn or do some cropping of batches that do not consist of contour information beforehand. I 
increased the pool size of the CNN and changed it from adam optimizer to rms optimizer. The CNN will do fit the 
generator model from data augmentation in 20 epochs with validation and training inputs inputted. I also implemented the 
validation set correctly during the fitting of the network with real data augmentation. The CNN does poorly during 
training, with an accuracy of 59 percent and 6 percent loss. This is because I used 3,000 images to train the dataset, which 
is 1/3 of the total training set, which might not contain evenly distributed images of each type of shape. I reduced the total 



training set by a third because I want to focus on getting the architecture of the CNN right and there is memory error at the
Tesla K80 GPU from the loading of the images since the validation data increased by twice as much as the previous one.
11.9.17: 
Trying to figure out how to redesign the architecture of my CNN by looking back on the research I did in Neural Network 
Design. I also need to create my own data generator (augmentation) function that crops large scaled images to reduce 
unnecessary background sampling of images in Pooling. I don’t want to separate the contours and filling of the images 
from the background because the background plays an important part in the composition of the entire image object. Such 
images that need to be cropped, where the dotted lines represent the cropping location, in a generator function are:

    


