
Since the neural network had a validation loss of 6.4028 with a validation accuracy of 0.58769, I changed the
optimizer from rms_prop back to adam and reduced the 2D Maxpool size from (8,8) to (4,4). There was no problem
loading the dataset of 1,000 images per each shape, with a total of 4,000 images. During the loading of the second half
of the dataset, a callback function in keras called early stopping will stop the learning of the network to prevent
overfitting. The convolutional neural network stopped at the 8/20 epoch in the loading of the second half of the dataset,
which I think is too early for the neural network to stop. It might have stopped because the dataset is insufficient, I will
increase the dataset by twice as much as the previous dataset after incorporating the cropping function in Keras. The
validation loss is at 4.8 percent with a validation accuracy of 67.5%.

I made changes to the architecture of the network where I won’t incorporate dropout during the beginning of the
convolutional extractions. This is because it is important to retain as much important information about the shapes since
I will be incorporating a cropping function either as a unified data generator as a callback parameter or ask a layer mask
between the convolution layer. Dropout will occur after the convolutional layers are flattened and in between the 2-
layer network. The network will still use stochastic learning since it’s convenient and generates good learning rates.
Below are the diagrams that explains the two modified designs of the neural network:

In order to make the convolutional neural network learn better, I
created a cropping function that finds the boundaries of the shapes
and crops accordingly. This cropping function will be applied as a
parameter in the data_generator in the convolutional neural network
loader file. This function is needed because the unnecessary
background data that does not contain the pixels of the shapes will
create more noise in the neural network during the convolutional 2D
process of image extraction. The cropping function will make the
neural network focus on the shapes in background instead of
extracting colors of backgrounds with no important features in them
besides colors. The function uses the cv2 module which is having
problem with dependencies from python 2 to python 3 in the
anaconda installations. The module works in python 3 but not in
python 2 so adjustment to fix this issue will be needed. The procedure of the program is to use the sobel algorithm to
detect the contours of the edges. The images have to be in grayscale beforehand, but the convolutional neural network
extract grayscale images because the function will return the coordinates necessary for cropping. The function will
create a boundary rectangle around the found contours and crop as necessary. Here are the black and white outputs of
the cropped images:

The ImageDataGenerator will be normalized via featurewise_center and featurewise_std_normalization in order to
make the convolutional neural network gather features that have equal significance. Sometimes the shapes blend with
the background environment, so normalizing the data will make the unfilled and filled shapes the same. In this code,
the cropping function of data shapes will be incorporated as a function in data generator of keras. This means that the
images will be cropped before being fed into the network. To maintain the original images of the network, I can use the
cropping as a layer mask in between the 2D convolution architecture by using Kera’s 2D cropping:
 classifier.add(Conv2D(32, (3, 3), input_shape = (300, 300, 3), activation = 'relu'))
 classifier.add(MaxPooling2D(pool_size = (4, 4)))
 # Adding a second convolutional layer, which is the same as the first one
 classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
 # change pool size from (2,2) to (8,8)
 classifier.add(MaxPooling2D(pool_size = (4, 4)))
 # Dropout layers at the second convolutional layer before flattening
 keras.layers.Cropping2D(cropping=get_edges(train_shape_dataset), data_format=None)
 # Step 3: Flattening the convolutional layers for input into a fully
 # connected layer
 classifier.add(Flatten())

