
Project Logs 

10.31.17:  

The training set consists of a total of 6,200 images. Before being serialized into a pickle file, the 

training set is organized in a tuple structure (numpy array, y_label). The numpy array is the data 

array processed by the PIL module in (300, 300, 3) format. The numpy array represents the 

matrix in float32 of the image. The y_label represents the target values of the shapes, which is 

the expected output of the convolutional neural network. Keras requires categorical crossentropy 

loss to be computed with categorical encodings. The categorical one hot encoding transfers 

integers (0...number of classes) into binary format. My y_label is a series of categorical hot 

encodings of 0, 1, 2 in binary format of three classes (circles, rectangles and squares, triangle).  

I had to change the numpy array data structure from a default float to float32 bit since the 

loading of the pickle files in the default float structure consumes too much memory in megabytes 

per file. The difference almost reduced the entire file size from 3.0 GB (without compression) to 

1.7 G.B. The pickle files are too huge, so I have to reduce the quality and size of each image to 

reduce the pickle files. Pickle loads and image creation of the shapes are created using 

multiprocessing of independent Pool workers. I have been trying to figure out how to create a 

pickle file, organize numpy arrays and store them in a huge list, dump that huge list using joblib. 

Use memmap to store large numpy arrays because it's inefficient for the list to increase in data 

memory allocation in list comprehension of pickle loading. The file below create (numpy arrays, 

y_label) tuples and stores them in a pickle file. 

The short-term goal is to train the shapes individually first and then figure out how to get the 

model to generalize on the “intersection” of shapes either by using recurrent convolutional neural 

networks or multi-label output using supervised learning. How will the network learn? I need to 

adjust the architecture of the CNN. The multi-label output is simpler and much easier. This 

requires sigmoid activation and loss = binary_crossentropy at the output layer for multi-label 

output to work. 

11.3-11.5.17:  

Google cloud works locally but had errors of loading pickle file remotely on google cloud 

because the Cloud Compute Engine doesn't recognize python's file descriptor. I need to use 

tensorflow's open method, need to set gs:// for every input file data for Google Cloud to 

recognized it. (See CNN loader file to run in cloud) 



11.6.17:  

There is an memory error when running on Google Cloud's regular CPU after one set of 10 

epochs for the first half of the dataset. There is not enough memory allocated and training took 1 

hour, which is too slow. I decided to use yaml configuration to run on a single NVIDIA K80 

GPU processor on Google Cloud Compute Engine.  

11.7.17: 

I executed this with no errors in Google Cloud with GPU computing on a validation set 1000 

images and training set of 6000 images with roughly 60 percent accuracy, 3 percent error rate in 

3 series of 10 epochs per training set each. The learning model is able to be saved. Google Cloud 

automatically plots the gradient on Tensorboard. The reason the error rate is so high and 

accuracy is low is because there are alot of background samples that the CNN intakes as pool 

sizes. Background colored samples are data that contains no linear information - unimportant 

numpy array figures. so when the network does the maxpool of background samples near the 

'important line samples', if the background samples are in greater distributation than the amount 

of important line samples, maxpool will label that area as background sample which makes the 

neurons increase the weights for backgrounds instead of the contour images itself. 

11.8.17: 

I increased the y-label output from 3 classes to 4 classes. Keras does the automatic shuffle at 

every epoch in fit_generator. I changed the architecture of the CNN, add drop out layers that 

might drop out neurons that have no data of contour characteristics being drawn or do some 

cropping of batches that do not consist of contour information beforehand. I increased the pool 

size of the CNN and changed it from adam optimizer to rms optimizer. The CNN will do fit the 

generator model from data augmentation in 20 epochs with validation and training inputs 

inputted. I also implemented the validation set correctly during the fitting of the network with 

real data augmentation. The CNN does poorly during training, with an accuracy of 59 percent 

and 6 percent loss. This is because I used 3,000 images to train the dataset, which is 1/3 of the 

total training set, which might not contain evenly distributed images of each type of shape. I 

reduced the total training set by a third because I want to focus on getting the architecture of the 

CNN right and there is memory error at the Tesla K80 GPU from the loading of the images since 

the validation data increased by twice as much as the previous one. 

11.9.17:  



Trying to figure out how to redesign the architecture of my CNN by looking back on the research 

I did in Neural Network Design. I also need to create my own data generator (augmentation) 

function that crops large scaled images to reduce unnecessary background sampling of images in 

Pooling. I don’t want to separate the contours and filling of the images from the background 

because the background plays an important part in the composition of the entire image object. 

Such images that need to be cropped, where the dotted lines represent the cropping location, in a 

generator function are: 

 

Also don't know I'm having a segmentation fault when implementing command line arguments 

in the cnn_sobel_py2.py file. This segmentation fault happens even without implementing the 

crop function that has a broken cv2 module installation in python 2. Python 3 in cv2 works fine. 

It is because of the opencv2 installation conda install -c https://conda.binstar.org/menpo opencv 

(in python 2 py27 environment). In python 3, it cv2 is installed in conda install --channel 

https://conda.anaconda.org/menpo opencv3 (not on environment). It's also I didn't use conda 

install -c conda-forge opencv (didn't include conda-forge. I'm testing it on my other machine to 

see if it works. 

11.15.17:  

The cropping function called get_edges works in the convolutional neural network loader, but 

Keras' generator wants me to return the original shape of the array (300, 300, 300). The resulting 

image being generated by the processor function get_edges is a cropped version of the image 

pasted on a white background which is 300 by 300 pixels. So the object is segmented from the 

background in this way. I don't know how to tell keras during the convolution to ignore all pure 

white pixels, or change to a higher stride if it reaches the white background. (The second option 



seems to be a better design, I'll look into it after finding out how the network will do with the 

cropping function being implemented) Get_edges cropping function will get boundaries of 

contour shapes and crops the images based on the location of the rectangular boundaries. 

Increased the offset from 15 to 50 or even 100, to allow more space for boundary area. This is 

because sometimes the cropping function crops the lines of the shape that are at the edges. I also 

need to write a function to remove cropped layers that are too small because that information is 

ambiguous, which might confuse the features the cnn is trying to detect. Such examples are seen 

in the images below, which needs to be removed from the training_set once the cropping 

dimensions reach to a space where it's too small 

11.16.17:  

The current designs of the cnn architecture are: Cropping as a Function Call V.S. Cropping as 

a Layer in between Convolutions   

If offset is 50 or greater, the offset extends the original image when pasted on the background 

(ValueError: tile cannot extend outside image) Going to clarify the architecture of the cnn 

(number neurons adjustment) and adding more details that are consistent with the code in the cnn 

loader file. 

11.17.17 – 11.20.17: 

Cropping as a preprocessing function works but sometimes the sobel algorithm returns a empty 

contours. Included a short version of the code where if the contours are empty, return the original 

image array. Cropping as a layer wouldn’t make sense since it crops all the input images at once, 



which will make manipulate the data too much where you can’t figure out squares from 

rectangles 

11.20.17-12.1.17 

The cropping of the images will be incorporated as a function since the cropping as a layer only 

works for an entire dataset input, not per image. The convolutional neural network has better 

accuracy with png files than jpg files. Due to memory limitations, jpg files will be used. I looked 

at the difference between the file types, png has more detail and jpg has some noise at some 

contours. Also, google cloud has memory limitations per job, even if I were to do 4GPU 

computation. I created a virtual machine instance with 58GB of memory at root in the cloud to 

solve this problem, and installed tensorflow from source with GPU cuda support for their Tesla 

K80 GPU. I've been trying to get my neural network to perform better accuracies and losses, it 

seems to not reach an accuracy over 75%. I tried increasing the amount of layers, but it didn't 

work. I might try fine-tuning the dropout and add a stride of 2,2 parameters for the convolutional 

layers. I also don't need to split the dataset anymore, running 8000 images for training and 1600 

images for validating the training set. I got the multilabel classification (intersections of shapes) 

to work by changing the y_labels using and cross entropy function to binary_crossentropy and 

sigmoid activations. I will test that after this set has a better accuracy. I am reading up on how to 

change my code to recurrent convolutional neural networks where the convolution layer will get 

the pixelized data from the images, followed by a LSTM recurrent layer which will perform 

object classification and detection using rectangular boundaries rather than the Dense MLP layer 

I have currently. 

12.5.17 – 12.8.17: 

Figured that the compression of PNG image data is more half the total size of JPG total image 

data (from 225 MB for JPG to 64 MB for PNG for 16000 images). Decided to see if I can get 

better training in PNG data. The main reason the loss won’t go any lower than 0.38 is because of 

the input data, the input data is too complicated with intersection of the same shapes per image. I 

decided to simplify that by drawing one shape per image. I have to manually select my data 

because I noticed that the data is far from perfect, circles are diluted, squares and rectangles need 

to be in the image instead of off the border and the triangles are too small. In order to deal with 

the background issue, I have to get Draw.py to return rgb as a string convert it to tuple in order to 

get the background color of that image. I need that background color since I would be using the 



sobel algorithm to crop the images and a CNN requires it to be the same shape. There will be no 

preprocessing as a function used in the main CNN loader file since I already did the cropping 

manually through cnn_sobel_main.py file and saving them as images. Basically, the sobel 

algorithm crops the image and Image module fills it with the same background color and the 

cropped image is pasted on a fix 200 by 200 image.  

12.8.17 – 12.15.17: 

 The model is underfitting the dataset since the validation loss is half of the training loss. 

The loss got a lot lower to around 0.15, with an accuracy of 94%.  The test loss is 

1.02644992199 with a Test accuracy 0.935570469799. This is a lot better from the previous data 

input of images. I would need to increase the training input and the number of layers in the CNN 

architecture. After the CNN architecture is changed, there’s less of an underfit with a starting 

training loss of 0.3778 and training accuracy of 0.8355, and the validation loss is 0.12 and 

validation accuracy is 0.96. I’m not sure if that’s underfitting or if it’s good. The training looks 

like it’s getting to a lower loss of 0.112. 


