
Maggie Cao

12-18-2017

CISC 4900 - Fall 2017

Paula Whitlock

Brooklyn College

Final Report: Simple Shapes Using Convolutional Neural Networks

Introduction:

 Pattern classification and recognition, which is a field of machine learning, has been one

of the most challenging tasks for a computer. This is because computers do not learn the same

way as humans. Humans can generalize and have temporary memory, making it difficult for

machines to be hard-coded in the natural technicalities of the human brain. However, neural

networks embody a similar organization of how neurons interact with each other.

Each weight of single neuron in the neural network represents how strong the neuron’s

knowledge is about the data input. The neurons are connected to each other in each layer and in

between layers, which is also called a fully connected layer. As each input data is propagated

forward through the hidden layers of the neural network, there are activation functions which

acts as a summation of the input values multiplied by the weights for the learning features to be

feed into the next layer. As it reaches the last layer output, which is the main classifier because it

determines the probability of the class, the data is backpropagated using sophisticated

multivariable calculus to update the weights.

Without the weight updates, the neural network would not be able to learn. Each epoch

describes a single forward and backward pass. Since the project is about classifying images of

simple shapes, which includes circle, triangle, rectangle and square, a convolutional neural

network will be implemented. A convolutional neural network do not need feature extraction in

the preprocessing of the input images. The layers of the convolutional neural network act as a

feature detector by extracting actual pixels from the data image, gathering features from filters

and maxpooling. Then, the convolutional neural network will be connected to a traditional fully

connected neural network to perform image classification.

Problem, Solution and Enhancements:

 There are a lot of problems that need to be solved in the simple shapes image

classification project. The hardest part of this simple shapes image classification problem is to be

able to get the convolutional neural network to generalize well without overfitting or underfitting

the network model. It is hard to generalize because the input data is never perfect, and it is

redundant for the convolutional neural network to process background data without the class

object. The input data is created by using Python’s Cairo module, where single shapes of each

class is drawn on random locations, rotations and scales on the 300 pixels by 300 pixels image.

The final solution to deal with the unnecessary background data is to use the Sobel algorithm to

detect edges, crop the image, and paste it on the 200 pixels by 200 pixels canvas with the same

background color. This must be done separately before the main convolutional neural network

loader file because I need to manually check if data image is good. Good data means that the

square and rectangles are not shifted to the side, the triangles are not so small and that the circles

do not overextend the boundary, making the image indecipherable. Then, the 200 pixels by 200

pixels cropped image will be feed into the convolutional neural network without the extra

preprocessing function in the Keras’ Image Generator.

A typical CPU will not be able to execute a convolutional neural network. The

convolutional neural network will be trained in Google Cloud’s virtual machine because a

typical job submitted to the Google Cloud gives a memory error if the data input is around 8000

images for training. Increasing the number of GPUs for the job would not work because each

GPU is assigned a fixed memory limit for a Google Cloud job. A virtual machine will allow the

user to manually install Tensorflow from source. This is because it is very time consuming to

train a convolutional neural network. It usually takes about two hours for training. Tensorflow is

installed from source, which enables AWX instructions with GPU CUDA support for the Tesla

K80. This speeds up the computation of the convolutional neural network by three times as

without installing Tensorflow from source. Hyperparameter tuning of the dropout layers is an

option for the virtual machine to be implemented with Google Cloud’s storage bucket of the

project.

Scope of the Work and System Documentation:

 The scope of the actual work completed is in the next pages with detailed explanations.

The project logs are on the website https://mahgieeee.github.io/.

https://mahgieeee.github.io/

Summary:

During training of the convolutional neural network, the network is not able to go below

a loss of 0.38 or reach an accuracy higher than 80% for any epoch. Based on the documentation,

the network looks like it is being overfitted because the validation accuracy is lower than the

training accuracy. I find that very peculiar and originally thought it was because I was using an

incorrect network architecture and loss optimizer for the loss function. I tested on many versions

of different network architectures, activation functions and optimizers, but the network still

won’t go below 0.38. The major mistake I made was that I assumed I had perfect data images

since I made my own data. I didn’t check if the data images are reliable. I had to manually check

every training and validation image data to ensure that the data is clear for the neural network to

process. After fixing the data images, the training of the convolutional neural network is being

underfitted because the validation accuracy is twice as much as the training accuracy and the

validation loss is half of the training loss as the first several epochs. This is shown in training

output documentation:

208/207 [==============================] - 62s - loss: 0.8218 - acc: 0.6593 - val_loss: 0.4303 - val_acc: 0.8694

I tried increasing the layers of the convolutional neural network and reducing the dropout

and maxpool layers and it seems to work. The current convolutional neural network architecture

is described in the below chart. It also trains in PNG data instead of JPG because the compressed

pickled files are much smaller (65MB).

Adam optimizer of 200 by 200 images (16,000 for training, 1,500 for validation)

Num of
Filters

64 64 64 256 256 256 4

Layer
Type

CONV_2D CONV_2D MAXPOOL CONV_2D MAXPOOL Flatten() Dense() Dense() Dense() Dense()

Conv.
Size

(3,3) (6,6) (6,6) (6,6) (6,6) Dropout
(0.15)

Dropout
(0.15)

Padding valid valid valid

activation relu relu relu relu relu relu softmax

Complete Description of tasks mentioned in the proposal but not accomplished with reasons:

 Image classification

and detection are two

separate things in terms of

getting the code to work. I

assumed that they have

buildable and very similar

architectures, but they are

completely different. This

project only does image

classification not image

detection since image

detection requires a

recurrent convolutional

neural network to be

implemented, such as the

FAST CNN. I am also not

able to get the model to

generalize well and I am

still confused about why the

model couldn’t learn well.

The final code also does not

account for intersections

between shapes as stated in

the interim status reports.

This is because the loss of

the convolutional neural

network during training

wouldn’t go down, so I had

to simplify my dataset to

consist of a single shape per

image data instead of two

variations of the same shape in an image. This is the simplified version of the current dataset and

the cropped version of it, which is the actual input data for the convolutional neural network.

Evaluation:

 I think I did considerably well considering that I did not have any prior knowledge or

experience in machine learning and convolutional neural networks. I had to learn a new

programming language Python 2.7 and Keras from scratch. I created a program to draw simple

shapes, my own pickle files to store numpy arrays, merge and load these arrays to prepare for the

training of the main convolutional neural network file. I did all of this by myself without

anybody helping me with the code. One of my friends just offered me advice on multiplying 255

by the float value for the Image module to get the correct background color of the image. My

friend who does Tensorflow gave me a link for a tutorial on compressing image data using save

from pickle. I had to use joblib to compress the data since it does a great job dumping huge lists

of numpy image data arrays. That code is not copied, it is a reference within the save part, which

is roughly five lines of code. In the main convolutional neural network file, I had to also use a

tutorial on how to prepare the file to be executed in the cloud. The tutorial is in

https://github.com/clintonreece/keras-cloud-ml-engine.

I learned that is extremely difficult to get the convolutional neural network to generalize

well during training. The network is overfitted and underfitted, but that balance is hard to get a

grasp of. This is because they are so many factors to consider, which are specifically

convolutional neural network architectures, image input data, loss functions, activation functions,

number of filters and neurons per layer. I also got a bit sidetracked by trying to do much in the

project, classifying multi-output labels of intersections between shapes. I should use programs to

analyze the image data, but the network is too complicated to get important information. This is

because it is difficult to get the gradients of the hidden layers.

https://github.com/clintonreece/keras-cloud-ml-engine

