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Introduction: 

 Pattern classification and recognition, which is a field of machine learning, has been one 

of the most challenging tasks for a computer. This is because computers do not learn the same 

way as humans. Humans can generalize and have temporary memory, making it difficult for 

machines to be hard-coded in the natural technicalities of the human brain. However, neural 

networks embody a similar organization of how neurons interact with each other.  

Each weight of single neuron in the neural network represents how strong the neuron’s 

knowledge is about the data input. The neurons are connected to each other in each layer and in 

between layers, which is also called a fully connected layer. As each input data is propagated 

forward through the hidden layers of the neural network, there are activation functions which 

acts as a summation of the input values multiplied by the weights for the learning features to be 

feed into the next layer. As it reaches the last layer output, which is the main classifier because it 

determines the probability of the class, the data is backpropagated using sophisticated 

multivariable calculus to update the weights.  

Without the weight updates, the neural network would not be able to learn. Each epoch 

describes a single forward and backward pass. Since the project is about classifying images of 

simple shapes, which includes circle, triangle, rectangle and square, a convolutional neural 

network will be implemented. A convolutional neural network do not need feature extraction in 

the preprocessing of the input images. The layers of the convolutional neural network act as a 

feature detector by extracting actual pixels from the data image, gathering features from filters 

and maxpooling. Then, the convolutional neural network will be connected to a traditional fully 

connected neural network to perform image classification. 

 

Problem, Solution and Enhancements: 



 There are a lot of problems that need to be solved in the simple shapes image 

classification project. The hardest part of this simple shapes image classification problem is to be 

able to get the convolutional neural network to generalize well without overfitting or underfitting 

the network model. It is hard to generalize because the input data is never perfect, and it is 

redundant for the convolutional neural network to process background data without the class 

object. The input data is created by using Python’s Cairo module, where single shapes of each 

class is drawn on random locations, rotations and scales on the 300 pixels by 300 pixels image.  

The final solution to deal with the unnecessary background data is to use the Sobel algorithm to 

detect edges, crop the image, and paste it on the 200 pixels by 200 pixels canvas with the same 

background color. This must be done separately before the main convolutional neural network 

loader file because I need to manually check if data image is good. Good data means that the 

square and rectangles are not shifted to the side, the triangles are not so small and that the circles 

do not overextend the boundary, making the image indecipherable. Then, the 200 pixels by 200 

pixels cropped image will be feed into the convolutional neural network without the extra 

preprocessing function in the Keras’ Image Generator.  

A typical CPU will not be able to execute a convolutional neural network. The 

convolutional neural network will be trained in Google Cloud’s virtual machine because a 

typical job submitted to the Google Cloud gives a memory error if the data input is around 8000 

images for training. Increasing the number of GPUs for the job would not work because each 

GPU is assigned a fixed memory limit for a Google Cloud job. A virtual machine will allow the 

user to manually install Tensorflow from source. This is because it is very time consuming to 

train a convolutional neural network. It usually takes about two hours for training. Tensorflow is 

installed from source, which enables AWX instructions with GPU CUDA support for the Tesla 

K80. This speeds up the computation of the convolutional neural network by three times as 

without installing Tensorflow from source. Hyperparameter tuning of the dropout layers is an 

option for the virtual machine to be implemented with Google Cloud’s storage bucket of the 

project.  

Scope of the Work and System Documentation:  

 The scope of the actual work completed is in the next pages with detailed explanations. 

The project logs are on the website https://mahgieeee.github.io/.  

 

https://mahgieeee.github.io/


Summary: 

During training of the convolutional neural network, the network is not able to go below 

a loss of 0.38 or reach an accuracy higher than 80% for any epoch. Based on the documentation, 

the network looks like it is being overfitted because the validation accuracy is lower than the 

training accuracy. I find that very peculiar and originally thought it was because I was using an 

incorrect network architecture and loss optimizer for the loss function. I tested on many versions 

of different network architectures, activation functions and optimizers, but the network still 

won’t go below 0.38. The major mistake I made was that I assumed I had perfect data images 

since I made my own data. I didn’t check if the data images are reliable. I had to manually check 

every training and validation image data to ensure that the data is clear for the neural network to 

process. After fixing the data images, the training of the convolutional neural network is being 

underfitted because the validation accuracy is twice as much as the training accuracy and the 

validation loss is half of the training loss as the first several epochs. This is shown in training 

output documentation:  

208/207 [==============================] - 62s - loss: 0.8218 - acc: 0.6593 - val_loss: 0.4303 - val_acc: 0.8694  

I tried increasing the layers of the convolutional neural network and reducing the dropout 

and maxpool layers and it seems to work. The current convolutional neural network architecture 

is described in the below chart. It also trains in PNG data instead of JPG because the compressed 

pickled files are much smaller (65MB). 

Adam optimizer of 200 by 200 images (16,000 for training, 1,500 for validation) 

Num of 
Filters 

64 64  64   256 256 256 4 

Layer 
Type 

CONV_2D  CONV_2D  MAXPOOL CONV_2D  MAXPOOL Flatten() Dense() Dense() Dense() Dense() 

Conv. 
Size 

(3,3) (6,6) (6,6) (6,6) (6,6)   Dropout 
(0.15) 

Dropout 
(0.15) 

 

Padding  valid valid  valid       

activation relu relu  relu   relu relu relu softmax 

 

 

 

Complete Description of tasks mentioned in the proposal but not accomplished with reasons: 



 Image classification 

and detection are two 

separate things in terms of 

getting the code to work. I 

assumed that they have 

buildable and very similar 

architectures, but they are 

completely different. This 

project only does image 

classification not image 

detection since image 

detection requires a 

recurrent convolutional 

neural network to be 

implemented, such as the 

FAST CNN. I am also not 

able to get the model to 

generalize well and I am 

still confused about why the 

model couldn’t learn well. 

The final code also does not 

account for intersections 

between shapes as stated in 

the interim status reports. 

This is because the loss of 

the convolutional neural 

network during training 

wouldn’t go down, so I had 

to simplify my dataset to 

consist of a single shape per 

image data instead of two 



variations of the same shape in an image. This is the simplified version of the current dataset and 

the cropped version of it, which is the actual input data for the convolutional neural network. 

 

Evaluation: 

 I think I did considerably well considering that I did not have any prior knowledge or 

experience in machine learning and convolutional neural networks. I had to learn a new 

programming language Python 2.7 and Keras from scratch. I created a program to draw simple 

shapes, my own pickle files to store numpy arrays, merge and load these arrays to prepare for the 

training of the main convolutional neural network file. I did all of this by myself without 

anybody helping me with the code. One of my friends just offered me advice on multiplying 255 

by the float value for the Image module to get the correct background color of the image. My 

friend who does Tensorflow gave me a link for a tutorial on compressing image data using save 

from pickle. I had to use joblib to compress the data since it does a great job dumping huge lists 

of numpy image data arrays. That code is not copied, it is a reference within the save part, which 

is roughly five lines of code. In the main convolutional neural network file, I had to also use a 

tutorial on how to prepare the file to be executed in the cloud. The tutorial is in 

https://github.com/clintonreece/keras-cloud-ml-engine.  

I learned that is extremely difficult to get the convolutional neural network to generalize 

well during training. The network is overfitted and underfitted, but that balance is hard to get a 

grasp of. This is because they are so many factors to consider, which are specifically 

convolutional neural network architectures, image input data, loss functions, activation functions, 

number of filters and neurons per layer. I also got a bit sidetracked by trying to do much in the 

project, classifying multi-output labels of intersections between shapes. I should use programs to 

analyze the image data, but the network is too complicated to get important information. This is 

because it is difficult to get the gradients of the hidden layers.   

https://github.com/clintonreece/keras-cloud-ml-engine

