
Maggie Cao

May 10, 2017.

CISC 3325

Security Project: Mirai

The Mirai botnet is a Distributed Denial of Service attack that uses an army of thousands or

millions of bots to find weak vulnerabilities in any device that's connected to the Internet. Once the

information about the devices’ vulnerabilities are gathered via Mirai's scanListen's application on

https:// or any IP port, Mirai uses brute force to read telnet or ssh entries from STDIN via ip:port and

user: password (Anna-senpai). The attacker can use a dictionary attack to create a file of most used

passwords in order to get into the network. Mirai's automatic scripts called .scanListen is enough for

the bots to get binary data using wget. The .scanListen script works with the .loader script via a pipe

./scanListen |./loader into the domain for bots to report their information. The loader pushes the

malware onto the Internet of Things (IoT) devices so the bots can use them (Barker). The Mirai attack

works if the quantity of botnets increase up to a point to cause a DDoS, which should be around two

thousand bots. When enough vulnerabilities are loaded, bots connect back to Mirai's main server, which

uses SQL as their database. The bots follow the DoS commands from Mirai's main server. The

available attack list includes UDP flood, DNS flooding that targets domains, SYN flood, GRE Ethernet

flood, ACK Flood, TCP stomp flood, GRE IP flood and HTTP flood.

I downloaded the Mirai Source Code from the github repository, which the creator Anna-senpai

made public on September 30, 2016. I want to build the code myself to understand what makes the

Mirai so successful in creating a large DDoS attack. I learned that Mirai is successful because it has

language overlaps and the executables are created by cross-compilers. Having language overlaps makes

the code easily accessible through operating systems, making it more convenient for the commander to

send attack commands. The coding language is quite simple; each bot's attack is written in c code and

the CNC table, which creates the commander's database where the bots respond to, is written in golang.

The rest of the code are created by executing ./build scripts inside the "mirai" folder and the "release"

folder. The execution of ./build.sh debug telnet generates binaries of multiple cross-compilers (ARM,

i86).

These binaries act as a data structure to hold CNC information and attack statuses for the bots to

hold onto (Anna-senpai) once they are connected to the commander's server. The execution of

./build.sh release telnet creates the same cross-compilers type binaries that will be loaded into

vulnerable devices (Anna-senpai). I placed the output of the ./build.sh release command onto the

second server (Apache2), so that bots can load these binaries once they find a vulnerable device. It is

interesting that the bots use binaries of about 60K to store their attack information (Anna-senpai)

because I think that is what makes the bots so effective in creating a massive botnet. The ability for

each Mirai botnet to utilize cross-compiled binaries as a data structure to hold vulnerabilities and

attacks is a very unique programming design. It is what makes the distributed DoS attack so successful.

By looking at Mirai's source code, I also want to know coding techniques that hackers use to

hide their malware. In this case, each Mirai bot embeds an internet worm onto vulnerable devices so

the bots need to be well hidden underneath web servers. One coding technique that the creator used is

writing their own software to encrypt their code in some sort of hexadecimal data format. If someone

gets the encrypted program, they will have no idea what it is or how to decrypt it. In the "tools" folder,

the ./enc.c command allows the user to decrypt the domain name address of the two servers. This is an

intelligent way for the creator to protect the Mirai's servers' identities. The Mirai's attack function also

allows the bots to be hidden behind the names of default users using http in a HTTP flood attack

(Herzberg).

The goal for this project is to execute a local attack at my house with my two laptops using two

local servers. The minimum requirement to execute the Mirai botnet is two servers. One server is for

CNC and mysql, where the Mirai's commander is located. The second server is for bots to roam around

and listen for IoT vulnerabilities and load malware onto those devices. I used the telnet port 23 for

CNC and mysql and https: port 80 for the bots' loading. For the CNC table to work, I have to run the

automated script on the SQL database and create a user and password for Mirai's commander program.

Mysql is very sensible because I kept on getting errors since SQL doesn't set localhost to be the same as

127.0.0.0 for security purposes on my Parrot Security OS laptop. I had go change the file main.go in

the "CNC" folder by setting it to localhost instead of IP address in order for SQL to accept my login

information as safe. In addition, the creation of the commander's application uses the telnet protocol

instead of ssh. I had to kill the init starting process in order for Mirai to use it. Mirai's code guarantees

that no other process on my laptop is using the telnet 23/tcp because the commander's server is meant

to gather a lot of bots and their attack data. I got the setup for Mirai's commander to work, followed

online instructions from a forum on how to scan for IP addresses and load bots. It is done by

executing ./build scripts inside the "ldr" and "loader" folders, which also creates cross-compiled

binaries that I have to put on the second server. Then I go to my other laptops, /var/www/html

directory, and execute ./scanListen | ./loader, but I didn't get any wgets.

I don't know whether it is because this is a local private network or because my IP addresses are

dynamic and not static. I didn't get the bots to connect to the commander's server via telnet. It might be

because the use telnet is limited in my OS as a security measure, but I did disabled the firewall and

enabled telnet. I learned that is it very hard to even execute Mirai successfully because I had to fix my

golang GOPATH issues at ~/.bashrc file, build cross-compilers (two of the compilers needed were not

listed so I had to install them separately) and fix security issues with telnet. Creating a Mirai botnet

depends on the server's capacity, protocol and security, which is hard for me to debug. Forcing the load

of ssh (tcp: 22) onto the net will allow the bots to listen and gather wgets (https://hackerforums.net),

but it didn't work for me because the commander's protocol is set to 23. I am interested to know how

Mirai can infect a telnet protocol if not a lot of people are using it. Setting the commander's server via a

telnet protocol might diffuse the network of bots and hide the commander's server because telnet is a

old and insecure protocol.

Works Cited

https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

https://medium.com/@cjbarker/mirai-ddos-source-code-review-57269c4a68f

https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md

